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Abstract
Diabetes and fibrosis can be concurrent processes in several diseases such as cystic fibrosis or chronic pancreatitis. To evaluate

whether diabetes can influence fibrosis and thus aggravate the pathological process, the progression of chronic pancreatitis was

assessed in diabetic and non diabetic mice. For this purpose, insulin producing beta-cells in C57Bl/6 J mice were selectively

impaired by administration of streptozotocin. Chronic pancreatitis was then induced by repetitive administration of cerulein in

normoglycaemic and hyperglycaemic mice. Diabetes caused enhanced collagen I deposition within three weeks of the onset of

chronic pancreatitis and increased the proliferation of interstitial cells. This was accompanied by an increased number of inter-

lobular fibroblasts, which expressed S100A4 (fibroblast-specific protein-1) and stimulation of a-smooth muscle actin expression of

pancreatic stellate cells. In addition, the observed aggravation of chronic pancreatitis by diabetes also led to a significantly

enhanced atrophy of the pancreas, increased infiltration of inflammatory chloracetate esterase positive cells and enhanced

acinar cell death. We conclude that diabetes has a detrimental influence on the progression of chronic pancreatitis by aggravating

fibrosis, inflammation and pancreatic atrophy.
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Introduction

Fibrosis occurs in many tissues as a result of inflammation
or damage and can have a devastating effect on the function
of organs, as observed, for example in liver cirrhosis, pul-
monary fibrosis or chronic pancreatitis.1–3 In chronic pan-
creatitis fibrosis is caused by stimulation of interstitial
cells called pancreatic stellate cells.4 Upon stimulation stel-
late cells start to express a-smooth muscle actin, which is fol-
lowed by deposition of extracellular matrix.4 These cells
can be found at the basolateral aspect of acinar cells
(periacinar cells) or in between lobuli (interlobular
fibroblasts).5–7

During some diseases, such as cystic fibrosis or chronic
pancreatitis, fibrosis is often accompanied by diabetes.1,3 In
particular, chronic pancreatitis is regularly associated with
diabetes.1 Some patients with beginning chronic pancrea-
titis may have either type 2 diabetes mellitus mostly due
to obesity or long-term type 1 diabetes, whereas patients
with longstanding chronic pancreatitis can develop type
3 c diabetes mellitus.8 The prevalence of diabetes in
chronic pancreatitis depends on aetiology, age, genetic

predisposition, degree of pancreatic damage, the presence
or absence of pancreatic calculi and the duration of the dis-
ease.1 For example, in one prospective cohort study with 500
patients the development of diabetes was observed in 83%
of patients with chronic pancreatitis.9 Chronic pancreatitis
causes type 3 c diabetes by reducing the beta-cell mass and
possibly by causing a reduced functionality of beta-
cells.10–12 Interestingly, it has also been documented that
diabetes is a mortality risk factor for chronic pancreatitis.13

This suggests that diabetes may also have an influence on
the progression of chronic pancreatitis. Surprisingly, no
experimental data exist to address the hypothesis if diabetes
influences fibrosis during chronic pancreatitis.

In this study, we explored whether diabetes influences
main features of chronic pancreatitis such as fibrosis,
inflammation and pancreatic atrophy. Our data demon-
strate that diabetes has a fundamental influence on the pro-
gression of chronic pancreatitis by enhancing collagen I
deposition and inducing the proliferation of interstitial
cells. In addition, diabetes enhances cell death of
acinar cells, increases the number of infiltrating inflamma-
tory cells and aggravates atrophy of the pancreas.
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Materials and methods
Animal husbandry and tissue collection

Eight- to twelve-week-old C57BL/6 J mice were either
sham- (Sham), cerulein- (Cer), streptozotocin- (STZ), or
streptozotocin plus cerulein- (STZ þ Cer) treated (Figure
1). Diabetes was induced in two cohorts (STZ, STZ þ Cer)
by intraperitoneal injection of 50 mg/kg streptozotocin
(Sigma-Aldrich, St Louis, MO, USA) daily on day 1–5 of
experimental design. Chronic pancreatitis was then
induced in two cohorts (Cer, STZ þ Cer) by administration
of three intraperitoneal injections of 50mg/kg cerulein
(Sigma-Aldrich) at a rate of one every hour three times a
week (thus Monday, Wednesday and Friday) over a period
of three weeks (Figure 1). All control mice were sham-
treated with appropriate vehicles (0.9% wt/vol. saline solu-
tion instead of cerulein; 50 mmol/L sodium citrate pH 4.5
instead of STZ). All four cohorts of mice received drinking
water containing 800 mg/L of metamizol to prevent poten-
tial pain caused by pancreatitis (Ratiopharm, Ulm,
Germany). In addition, all mice received 1 g/L 5-bromo-
2’-deoxyuridine (BrdU, Sigma-Aldrich) during the entire
period of chronic pancreatitis in the drinking water, in
order to evaluate cell proliferation. Blood samples for
assessing amylase and lipase activity were taken 2 h after
the third cerulein injection on day 22, or on day 47, one
week after the last cerulein injection. Pancreatic tissue was
sampled on day 26, 2 h after the last cerulein administration
or on day 47. Blood glucose was measured with the blood
glucose metre Contour (Bayer Vital, Leverkusen, Germany)
on day 1 before the first STZ injection and on day 22 before
the first cerulein injection. For retrobulbar blood sampling
and tissue collection, the animals were anaesthetised with
75 mg/kg ketamine (bela-pharm, Vechta, Germany) and
5 mg/kg xylacine (Bayer Health Care, Leverkusen,
Germany). After the start of laparotomy, the tissue was iso-
lated within a maximum of 5 min and fixed in 4% (wt/vol.)
phosphate-buffered formalin for 2–3 days. In addition,
squeezing of the pancreas with tweezers was avoided, in

order to minimise tissue damage. All experiments were per-
formed in accordance with German legislation and the prin-
ciples of laboratory animal care.

Analysis of plasma and tissue

To assess acinar cell damage, the activity of lipase and amyl-
ase in blood plasma was analysed using the Cobas c111
spectrophotometer (Roche Diagnostics, Mannheim,
Germany). Pancreatic atrophy was quantified as pancreas
to body weight ratio and the pancreas was processed as
described previously for histological staining.14 To evaluate
the cellular inflammatory response, which is characterised
by infiltration of granulocytes during cerulein-induced
pancreatitis,15 naphthol AS-D chloroacetate esterase (CAE)
staining was performed on paraffin embedded tissue. Cell
death was analysed using the ApopTag Plus Peroxidase in
situ detection kit (Millipore, Eschborn, Germany). Cell pro-
liferation or fibrosis was evaluated by immunohistochem-
istry using mouse anti-BrdU (clone Bu20a, dilution 1:50),
rabbit anti-collagen-I (Abcam, Cambridge, UK, code ab
34710, dilution 1:200), goat anti-S100A4 (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, code sc-19949, dilution
1:50) or rabbit anti-a-smooth muscle actin (Abcam, ab5694,
dilution 1:800). All immunohistochemical procedures were
performed using the Universal LSABþ Kit/HRP as source
for appropriate secondary antibodies (Dako, Hamburg,
Germany). Planimetric analysis of collagen I positive
areas in the pancreas was performed on 10 randomly
chosen pictures (taken with a 40 x objective) of pancreatic
tissue per mouse by using Adobe Photoshop CS5 (Adobe,
San Jose, CA, USA).

Statistics

Data presentation and statistics were performed as
described previously.14 The significance of differences was
evaluated using a Mann–Whitney rank-sum test, followed
by the correction for the accumulation of the a error by
considering the number of meaningful comparisons.
Differences with P� 0.05, divided by the number of mean-
ingful comparisons were considered to be significant.
Differences with P< 0.08, divided by the number of mean-
ingful comparisons, were considered to indicate a tendency.

Results
Quality control of induced diabetes and chronic
pancreatitis

At the beginning of the experiment, on day 1, all four
cohorts of mice had similar blood glucose concentrations
(Sham: 6.8/6.6–8.3, Cer: 7.7/7.0–8.8, STZ: 7.1/6.3–7.9, STZ
þCer: 7.0/6.0–8.2, median/interquartile range in mmol/L).
Injection of STZ caused a strong rise in blood glucose con-
centration in STZ- and STZ plus cerulein-treated cohorts by
day 22 when compared to control cohorts (Figure 2a). Thus,
the blood glucose concentrations of the STZ versus STZ
plus cerulein cohorts were comparable to each other, but
were significantly increased in comparison to sham- and
cerulein-treated mice. Two hours after the first three con-
secutive cerulein or sham injections on day 22, lipase and
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Figure 1 Experimental protocol. In two cohorts (STZ, STZþ Cer) diabetes was

induced by intraperitoneal injection of 50 mg/kg streptozotocin on day 1–5 of the

experimental paradigm. Control cohorts (Sham, Cer) were sham-treated in the

same manner by injection of 50 mmol/L sodium citrate pH 4.5. In two cohorts

(Cer, STZ þ Cer) chronic pancreatitis was then induced from day 22 to day 40 by

administration of three intraperitoneal injections of 50 mg/kg cerulein at a rate of

one every hour on Monday, Wednesday and Friday. Control cohorts (Sham, STZ)

were sham-treated in the same manner with 0.9% wt/vol. saline. In order to

evaluate cell proliferation, all mice received 1 g/L BrdU during the entire period of

chronic pancreatitis in the drinking water. The tissue was either collected on day

26 or on day 47
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amylase activity in blood plasma was assessed. Lipase
activity increased significantly in cerulein as well as STZ
plus cerulein-treated mice when compared to control
cohorts (Figure 2b), verifying the onset of pancreatic
tissue injury. The analysis of amylase activity confirmed
the lipase activity data, since amylase activity increased sig-
nificantly in cerulein as well as STZ plus cerulein-treated
mice when compared to control cohorts (Figure 2c). On day
47, one week after the last episode of cerulein-induced
chronic pancreatitis, both lipase as well as amylase activity
returned to physiological levels (data not shown).

Diabetes enhances collagen I deposition and
proliferation of interstitial cells

Immunohistochemical analysis of the pancreas on day 47
revealed barely any collagen I deposition in sham-treated or
STZ-treated mice, whereas in cerulein and especially STZ
plus cerulein-treated mice prominent collagen I deposition
was observed (Figure 3a). Planimetric evaluation of the col-
lagen I positive tissue area affirmed a significant increase in
collagen I deposition in the pancreas of cerulein-treated
mice when compared to sham-treated animals (Figure 3b).
Collagen I deposition in STZ plus cerulein-treated mice was
increased, when compared to sham, STZ- or cerulein-trea-
ted animals (Figure 3b). In order to assess if this increase in
collagen deposition correlates with an expansion of inter-
stitial cell populations, the BrdU incorporation in interstitial
cells was evaluated on day 26. Proliferation of interstitial
cells was increased in the mouse cohort treated with ceru-
lein and a major increase in proliferation of interstitial cells
was observed in mice treated with STZ plus cerulein
(Figure 3c). Analysis of the percentage of BrdUþ cells in
the islets of Langerhans on day 26 revealed reduced prolif-
eration of islet cells during chronic pancreatitis, but
increased proliferation in diabetic mice (Sham: 1.45/0.65–
2.23, Cer: 0.71/0.00–0.95, STZ: 2.06/1.9–3.23, STZ þ Cer:
1.57/0.51–2.32, median/interquartile range in percentage
of BrdUþ cells, the differences were not significant).
Diabetes, therefore, significantly stimulates the expansion
of interstitial cells and enhances collagen I deposition

during chronic pancreatitis, but only moderately stimulates
the proliferation of islet cells.

Diabetes stimulates activation of pancreatic stellate
cells

Collagen can be produced by stimulated fibroblasts. In the
pancreas, especially stellate cells have been reported to pro-
duce collagen during pancreatitis.7 Thus, we evaluated the
expression of S100A4 (fibroblast-specific protein-1), as gen-
eral fibroblast marker and a-smooth muscle actin, which is
expressed by pancreatic stellate cells only after tissue injury.
Immunohistochemical analysis of the pancreas revealed
that interlobular fibroblasts express S100A4 (fibroblast-spe-
cific protein-1) independent of diabetes or pancreatitis
(Figure 4a). In cerulein and especially STZ plus cerulein-
treated mice, however, more S100A4 positive interlobular
cells could be observed on day 26 (Figure 4a). The expres-
sion of a-smooth muscle actin was observed in azinar as
well as interlobular stellate cells only after cerulein and
STZ plus cerulein treatment, whereas in all animals a-
smooth muscle actin positive blood vessels could be noticed
(Figure 4b). The intensity of a-smooth muscle actin staining
of periacinar cells as well as interlobular stellate cells was
increased in STZ plus cerulein-treated mice in comparison
to cerulein-treated mice. This suggests that diabetes
enhances the activation of stellate cells during chronic
pancreatitis.

Diabetes enhances pancreatic atrophy and alters pan-
creas histology

Analysis of the pancreas on day 47 revealed a distinct atro-
phy of the pancreas in cerulein-treated mice compared to
sham-treated animals (Figure 5a). This atrophy was even
more pronounced in STZ plus cerulein-treated mice,
when compared to sham-, STZ- or cerulein-treated animals
(Figure 5a). Haematoxylin/eosin staining of sections on day
47 revealed no pathological features in the exocrine tissue in
sham- and STZ-treated mice, whereas cerulein and espe-
cially STZ plus cerulein-treated animals had fields
of acinar cells interrupted by interstitial cells (Figure 5b).
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In addition, beginning acinar to ductal metaplasia was often
observed in STZ plus cerulein-treated mice (Figure 5b).

Diabetes enhances inflammation and cell death

On day 26, a significantly increased number of CAE posi-
tive infiltrating inflammatory cells were observed in the
pancreas of cerulein-treated mice when compared to
sham-treated animals (Figure 6a). STZ plus cerulein-treated
mice showed an even stronger increase in the number of
CAEþ inflammatory cells when compared to sham-, STZ- or
cerulein-treated animals (Figure 6a). Cell death of acinar
cells was modestly increased in the mouse cohort treated
with cerulein, whereas a major increase in dying acinar cells
was observed in mice treated with STZ plus cerulein
(Figure 6b).

Discussion

The presented data demonstrate that diabetes (i) enhances
collagen I deposition, (ii) increases proliferation of intersti-
tial cells, (iii) stimulates the expression of a-smooth muscle
actin in stellate cells, (iv) aggravates inflammation and (v)
induces cell death during chronic pancreatitis. Diabetes
leads, therefore, to a detrimental increase in fibrosis and
pancreatic atrophy within three weeks of chronic pancrea-
titis. Thus, diabetes fundamentally aggravates the progres-
sion of chronic pancreatitis.

The observations in this study correlate well with a clin-
ical study describing that diabetes is a mortality risk factor
for chronic pancreatitis.13 A detrimental influence of dia-
betes has also been discussed in the context of acute pan-
creatitis.15 For example, patients with diabetes have a
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higher risk of acute pancreatitis and hyperglycaemia may
predispose patients with acute pancreatitis to systemic
organ failure.16–19 In addition, blood glucose level is an
accurate predictor of outcome in gallstone pancreatitis
and an important criterion for assessing the prognosis of
acute pancreatitis by the Ranson score.20,21 However, a def-
inite cause and effect relationship between diabetes and
pancreatitis cannot be evaluated in these clinical studies,
but needs to be addressed in an experimental setting.

Only few experimental data are available that address
the question whether diabetes influences pancreatitis. For
example, hyperglycaemia correlates with increased inflam-
mation during chronic pancreatitis in CCR2 loss of function
mice.22 In addition, we demonstrated in a previous study
that diabetes increases tissue damage and reduces regener-
ation in the pancreas after acute pancreatitis.23 Both

publications are consistent with this study and support
the hypothesis that diabetes has a major influence on the
exocrine compartment during pancreatitis.

The observed aggravation of chronic pancreatitis by dia-
betes raises the question whether diabetes has a direct effect
on acinar cells and stellate cells. A direct effect of diabetes
on acinar cells has been described previously and has been
summarised as so called endocrine to exocrine axis hypoth-
esis.1,24 For example, numerous publications document that
diabetes reduces the secretion of digestive enzymes such as
amylase.25–27 These observations might partially explain
exocrine deficiency that can be observed in some diabetic
patients.28 However, it seems to be counterintuitive that the
aggravation of pancreatitis by diabetes could be explained
by exocrine insufficiency of acinar cells. It is more likely that
diabetes has a profound influence on pancreatitis through
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other mechanisms such as modulation of the inflammatory
response or the aggravation of cell death.

A direct effect of diabetes on stellate cells is supported by
some in vitro experiments. For example, high glucose con-
centration has been reported to induce proliferation and
synthesis of extracellular matrix proteins in interstitial
cells which were isolated from the pancreas.29–31

However, since STZ-treated hyperglycaemic mice did not
have any obviously increased collagen I deposition or acti-
vation of stellate cells, higher glucose concentration alone
seems to be insufficient to induce fibrosis in vivo. Only in the
context of chronic pancreatitis we observed that diabetes
increased collagen deposition and activation of stellate
cells. This suggests that diabetes does not cause, but aggra-
vates inflammation-induced fibrosis. However, we cannot
determine if diabetes stimulates stellate cells directly or
indirectly, for example, via modulation of inflammation.
Nevertheless the characterised aggravation of fibrosis by
diabetes might be of clinical relevance, since some clinical
studies support this conclusion. For example, enhanced
fibrosis was observed post mortem in the pancreas of
patients with type 2 diabetes.32 In addition, enhanced fibro-
sis was also observed in other organs, in diabetic patients
with hepatitis C virus-infected liver and in patients suffer-
ing from idiopathic pulmonary fibrosis.33,34

As a secondary finding, we observed that diabetes mod-
erately increased proliferation of islet cells. This is consist-
ent with previously published data, describing increased
proliferation of b-cells as well as a- and d-cells in islets
after application of STZ.35–37 To our surprise application
of supraphysiological levels of cerulein, an analogue of
cholecystokinin, did not increase, but rather reduced the
proliferation of islet cells. This is not consistent with previ-
ous publications, which describe increased proliferation of
islet cells after application of moderate levels of cholecysto-
kinin.38,39 We assume that the inflammatory micromilieu
caused by supraphysiological levels of cerulein has the
opposite effect than administration of moderate concentra-
tions of cholecystokinin.

Recently, an intensified insulin therapy for patients with
pancreatitis as well as for critically ill patients in general has
been widely discussed.40–42 Since the danger of hypogly-
caemia in patients with pancreatitis is high, a conservative
insulin therapy is usually pursued.8,43,44 However, studies
also report that a more intensified careful insulin therapy
can be applied to patients with chronic pancreatitis without
increasing the incidence of hypoglycaemic events.42 Thus, if
diabetes had a similar strong negative effect on pancreatitis
in humans as observed in mice, a more intensified insulin
therapy could be beneficial to some patients.
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