Aktuellste Publikationen

Curr Alzheimer Res. 2019;16(1):49-55. doi: 10.2174/1567205015666181022095904.

[18F]-florbetaben PET/CT Imaging in the Alzheimer's Disease Mouse Model APPswe/PS1dE9.

Stenzel J1, Rühlmann C2, Lindner T1, Polei S1, Teipel S3, Kurth J4, Rominger A5, Krause BJ1,4, Vollmar B1,2, Kuhla A2.


Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer's disease (AD). In preclinical research, [18F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [18F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques.


Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [18F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [18F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed.


Visual inspection and SUVs revealed an increased cerebral uptake of [18F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis.


The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [18F]-florbetaben in the APPswe/PS1dE9 mouse model.


J Alzheimers Dis. 2019;68(4):1415-1427. doi: 10.3233/JAD-181017.

Metformin Therapy Aggravates Neurodegenerative Processes in ApoE-/- Mice.

Kuhla A1, Brichmann E1, Rühlmann C1, Thiele R1, Meuth L1, Vollmar B1.

Epidemiological studies suggest that individuals with diabetes mellitus are at greater risk of developing Alzheimer's disease. A well-known insulin-sensitizing drug and the most widely prescribed oral medication for diabetes is metformin. There is evidence that metformin acts in a neuroprotective manner via the AMPK/mTOR pathway by inhibiting the tau phosphorylation. In addition, it is known that metformin upregulates Fgf21, which in turn activates the AMPK/mTOR pathway and mediates neuroprotection. Thus, metformin-induced Fgf21 release may be involved in AMPK/mTOR activation. However, some studies reported that metformin causes cognition impairment. Due to the controversial data on the neuroprotective properties of metformin, we treated Apolipoprotein E deficient (ApoE- /-) mice, a mouse model of tauopathy, with metformin for 18 weeks. Metformin-treated mice revealed increased expression of lipogenic genes, i.e., lxrα and srebp1c. In line with this, metformin caused an increase in plasma triglyceride leading to enhanced gliosis as indicated by an increase of GFAP-positive cells. Although the systemic Fgf21 concentration was increased, metformin did not activate the FgfR1c/AMPK/mTOR pathway suggesting a Fgf21-resistant state. Further, metformin-treated mice showed increased tau phosphorylation and reduced numbers of NeuN-and PSD95-positive cells. Thus, metformin-associated lipogenesis as well as inflammation aggravated neurodegenerative processes in ApoE- /- mice. Consequently, this study supports previous observations showing that metformin causes impairment of cognition.

J Adv Res. 2019 Apr 24;20:9-21. doi: 10.1016/j.jare.2019.04.006. eCollection 2019 Nov.

LW6 enhances chemosensitivity to gemcitabine and inhibits autophagic flux in pancreatic cancer.

Zhang X1, Kumstel S1, Jiang K2, Meng S2, Gong P3, Vollmar B1, Zechner D1.

The efficacy of gemcitabine therapy is often insufficient for the treatment of pancreatic cancer. The current study demonstrated that LW6, a chemical inhibitor of hypoxia-inducible factor 1α, is a promising drug for enhancing the chemosensitivity to gemcitabine. LW6 monotherapy and the combination therapy of LW6 plus gemcitabine significantly inhibited cell proliferation and enhanced cell death in pancreatic cancer cells. This combination therapy also significantly reduced the tumor weight in a syngeneic orthotopic pancreatic carcinoma model without causing toxic side effects. In addition, this study provides insight into the mechanism of how LW6 interferes with the pathophysiology of pancreatic cancer. The results revealed that LW6 inhibited autophagic flux, which is defined by the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and p62/SQSTM1. Moreover, these results were verified by the analysis of a tandem RFP-GFP-tagged LC3 protein. Thence, for the first time, these data demonstrate that LW6 enhances the anti-tumor effects of gemcitabine and inhibits autophagic flux. This suggests that the combination therapy of LW6 plus gemcitabine may be a novel therapeutic strategy for pancreatic cancer patients.

Animals (Basel). 2019 Apr 3;9(4). pii: E145. doi: 10.3390/ani9040145.

Grading Distress of Different Animal Models for Gastrointestinal Diseases Based on Plasma Corticosterone Kinetics.

Kumstel S1, Tang G2, Zhang X3, Kerndl H4, Vollmar B5, Zechner D6.

Comparative studies for evaluating distress in established animal models are still rare. However, this issue is becoming more important as a consequence of worldwide appreciation of animal welfare. One good parameter for evaluating distress is the quantification of corticosterone. We hypothesized that not just the absolute value but also the duration of increased corticosterone concentration in the blood is an important aspect for evaluating animal distress. Therefore, we analyzed plasma corticosterone concentrations 30, 60, 120, and 240 min after induction of pancreatitis by cerulein, liver damage by carbon tetrachloride, liver damage by bile duct ligation, and after orthotopic injection of pancreatic cancer cells. We also evaluated corticosterone kinetics after injection of distinct carrier substances. Compared to phosphate buffered saline, dimethyl sulfoxide leads to dose-dependent higher and longer-lasting circulating corticosterone concentrations. In all disease models, we observed significantly increased corticosterone concentration 30 min after stress induction. However, the corticosterone kinetics differed among the animal models. Both the absolute value of corticosterone concentration and the duration correlated positively with the quantification of animal distress by a score sheet. This suggests that both variables of corticosterone kinetics might provide a solid basis for comparing and grading distress of different animal models.